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We compare the effectiveness of various tests of three-flavor mixing in future long-baseline neutrino
oscillation experiments. We analyze a representative case of mixing in a simplified three-flavor
scheme, whose relevant parameters are one nentrino mass-square difference, m®, and two mixing
angles, ¢ and ¢. Weshow that an unambiguons determination of ¢ and ¢ requires flavor-appearance
tests in accelerator experiments, as well as supplementary information from reactor axperiments.
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Prospects of accelerator and reactor neutrino
oscillation experiments for the coming ten years
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Ahbhstract

We analvze the physics potential of long baseline nentrino oscillation experiments
planned for the coming ten vears, where the main focus is the sensitivity limit to the
small mixing angle #1a. The discussed experiments include the conventional beam ex-
periments MINOS, ICARUS, and OPERA. which are under construction, the planned
superbeam experiments J-PARC to Super-Kamiokande and NuMI off-axis, as well as
new reactor experiments with near and far detectors, represented by the Double-Chooz
project. We perform a complete numerical simulation including systematics, correla-
tions, and degeneracies on an equal footing for all experiments using the GLoBES
software. After discussing the improvement of our knowledge on the atmospheric pa-
rameters fag and ;‘lm%l bw these experiments, we investigate the potential to determine
tha within the next ten years in detail. Furthermore, we show that under optimistic
assumptions and for #13 close to the current bound., even the next generation of ex-

periments might provide some information on the Dirac CP phase and the type of the

neutrino mass hierarchy.
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of sin® 2814 [20]. These parameters can be only measured by the Yy — Uy, U, — Ve, and
v, — vy channels in beam experiments. However, comparing Eqs. (1) and (2], one can

easily see that reactor experiments should allow a “clean” and degenerate-free measurement
of sin® 26,5 [19]. In contrast, the determination of sin® 26,5 using the appearance channel
in Eq. (1) is strongly affected by the more complicated parameter dependence of the oscil-
lation probability, which leads to multi-parameter correlations [27] and to the (4,815) [37].
sgn(Ami; ) [38], and (fgg, m/2 — f3) [39] degeneracies, i.e., an overall “eight-fold” degener-
acy [40]. In the analysis, we take into account all of these degeneracies. Note however, that
the (fq, /2 — #aq) degeneracy is not present, since we always adopt for the true value of #yq
the current atmospheric best-fit value #33 = 7 /4. The proper treatment of correlations and
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Disappearance and appearance experiments
measure different quantities:

Super-K / Minos /
T2K Measures

2
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Measurement with sin2 6,, = 0.95 + 0.01
= 0,5 =38° or 52°

Prediction for appearance rate « sin?0,,
= sin?0,; = 0.38 or 0.62
(x1.6 uncertainty)

(K. McConnel and M.Shaevitz. — hep-ex/0409028)



N' Precise Determination of sin?(26.,5)
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If Sin2(26,5) = 1 it can be
measured to 0.004.

Otherwise, it can be measured
to ~ 0.01.

Narrow-band beam and excellent energy
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How astrophysical neutrino sources could be used for early
measurements of neutrino mass hierarchy and leptonic CP phase

1 Considers neutrino fluxes from neutron sources, muon sources and damped pion sources
as a ratio of muon flux to e plus tau flux, which can be extracted from neutruino telescopes.
Assumes no new phenomena such as neutrino decay.

No distinction is made between neutrinos and antineutrinos.

Muons are identified by cerenkov light, nu_e by EM showers.

Taus and nu_e are difficult to distinguish.

Neutral current interactions are a background subtraction.

Statistics on an astronomical nu source may be root(10) below that of reactor and superbeams.

2 The ratio does not measure oscillation parameters in iteslf, but is very complementay
to the reactor and beam measurements, and can improve the sensitivity when all
measurments are compined.

3 If thetal3 is large, a measurement of R can not only lead to an early measurement
of the CP phase, but can solve the mass heirarchy as well.

4 It may even be possible to obtain a measurement of the CP phase with a
result from Double CHOOZ alone, with no input from superbeams.

5 If thetal3 is small, a measurement of R can help to remove the octant degenracy
better than a reactor experiments and superbeams alone.

6 An additional observation - the electromagnetic to hadronic shower ratio --
at a neutrino telescope could be beneficial for pion sources.
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Neutron Beam Source Pion beam Source Muon damped Sourde
Neutron decays Pion decays Pi decay with absorbed muon
(e:mu:tau)

(1:0:0) (1:2:0) (0:1:0)

R~0.26 R~0.5 R~0.66

R may also have an energy dependence characteristic of the source.

The mass eigenstates loose coherence because of long distances
Assuming the source is many wavelengths from the earth, the oscillations
average to the central value. Small variations are a measure of 0,5 and 6.5
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Figure 1: Sources used in this study for which the signal depends on dcp. We show the quantities R and
Fie (Faz), respectively, as function of dcp for different values of gin® 20;3. The shaded bars illustrate the size
of the 5%, 10%, and 20% errors for the chosen central values (horizontal lines). For the terrestrial neutrino

beam, we assume vacunm oscillations (or short enough baselines) and a measurement at the atmospheric

cecillation maximum.
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Resolving the Mass Hierarchy

95% CL Resolution of the Mass Hierarchy

Meutron beam source alone, 10% Double Chooz alone
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Figure 3: Fit regions as function of sin? 263 and écp for different experiments as given in the plot
captions (the lower row is always in combination with Double Chooz). The simmlated values are chosen as
marked by the dots. The contours are shown for the 1o (black curves, dark regions) and 90% (gray curves,
light regions) confidence level (1 d.o.f.). Dashed curves represent the results when the other (not shown)
oscillation parameters are fixed, i.e., not marginalized over. The arrows in the lower row mark the ranges
in dcp which can be excluded at the 90% confidence level.
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Figure 2: Tlustration of the synergy among superbeams, reactor experiments, and astrophysical fluxes

(at the example of a muon damped source) in sin® 20y3-dcp-space. Shown are the eurves for constant

rates (superbeam, reactor experiment ) and constant R (astrophysical Hux) going through the best-fit point
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Figure 5 Sensitivity to the normal mass hierarchy as function of true sin® 2813 and true dcp (stacked

to the “Fraction of écp™) for MINOS, Double Chooz, T2K, and NOvrA combined with an astrophysical
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Figure 8: CP patterns for MINOS, Double Chooz, T2K, and NO#A combined for several external
precisions on A from an astrophysical muon damped source. The CP patterns quantify the measurement
of dop (CP coverage) as a function of the true value of écp (provided by nature) for sin® 2633 = 0.1. The
CP coverage is defined as range of fit values of 4cp which fit the chosen true value, and can be between 0
(precise determination of dcp) and 360° (no information on dcp). The thick curves correspond (from dark

to light) to Ay? = 9, 4, and 1 respectively, and the thin curves represent the results without taking into

account the sgn(Am3, J-degeneracy.
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Figure 10: Dstration of the ohservables (R for astrophysical sources, total event rates for the beam)
for the octant degeneracy resolution as function of sin® fas for sin® 283 = 0 (left) and sin® 2613 = 0.1 (right).
The bands reflect the unknown value of dop. Note the scaling of the vertical axes depending on the source
considered. The gray-shaded areas mark the 37 excluded region [45]. For NOwA, we assume five years of

neutrino running, for this fignre.
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Double CHOOZ will set a limit at about 0.02-0.03.
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